organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[(*Z*)-2-Butyltellanyl-1-chloroethenyl]cyclohex-1-ene

Julio Zukerman-Schpector,^a* Ignez Caracelli,^b Rafael Carlos Guadagnin,^c Hélio A. Stefani^d and Edward R. T. Tiekink^e

^aDepartmento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, ^bBioMat – Departmento de Física, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, ^cDepartamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo – Campus Diadema, Rua Professor Artur Ridel, 275, 09972-270 Diadema, SP, Brazil, ^dDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil, and ^eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: julio@power.ufscar.br

Received 17 February 2012; accepted 19 February 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.023; wR factor = 0.069; data-to-parameter ratio = 18.9.

The Te^{II} atom in the title molecule, $C_{12}H_{19}$ CITe, is coordinated in a V-shaped geometry by C atoms derived from the disparate organic substituents. A short intramolecular C-H···Cl contact occurs owing to the proximity of the ethene bond in the six-membered ring to the Cl atom. In the crystal, molecules assemble into layers parallel to the *ac* plane, with the closest interactions between them being of the Te···Te type [3.9993 (16) Å].

Related literature

For background to the synthesis, see: Guadagnin *et al.* (2008). For related crystal structures, see: Zeni *et al.* (1999); Barrientos-Astigarraga *et al.* (2002). For ring conformational analysis, see: Cremer & Pople (1975). The van der Waals radius for Te was taken from Bondi (1964).

Experimental

Crystal data	
$C_{12}H_{19}CITe$ $M_r = 326.32$	a = 7.666 (3) Å b = 7.687 (3) Å
Triclinic, P1	c = 12.266 (4) Å

$\alpha = 95.499 \ (15)^{\circ}$	
$\beta = 105.060 \ (14)^{\circ}$	
$\gamma = 111.832 \ (13)^{\circ}$	
$V = 632.8 (4) Å^3$	
Z = 2	

Data collection

Rigaku Saturn724 (2×2 bin mode)	3588 measured reflections
diffractometer	2421 independent reflections
Absorption correction: multi-scan	2406 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.024$
$T_{\min} = 0.575, \ T_{\max} = 1.000$	

Mo $K\alpha$ radiation $\mu = 2.53 \text{ mm}^{-1}$

 $0.3 \times 0.3 \times 0.2 \text{ mm}$

T = 100 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	128 parameters
$vR(F^2) = 0.069$	H-atom parameters constrained
S = 1.17	$\Delta \rho_{\rm max} = 0.86 \text{ e } \text{\AA}^{-3}$
2421 reflections	$\Delta \rho_{\rm min} = -0.95 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Te-C1	2.077 (3)	Te-C9	2.148 (3)
C1–Te–C9	94.09 (12)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8−H8···Cl	0.95	2.56	3.024 (3)	110

Data collection: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *MarvinSketch* (ChemAxon, 2010) and *publCIF* (Westrip, 2010).

We thank the Brazilian agencies FAPESP (grant No. 07/ 59404–2 to HAS), CNPq (grant Nos. 306532/2009-3 to JZS and 308116/2010-0 to IC) and CAPES (grant No. 808/2009 to JZS and IC) for financial support. ERTT thanks the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/ HIR/ MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2453).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Barrientos-Astigarraga, R. E., Castelani, P., Sumida, C. Y., Zukerman-Schpector, J. & Comasseto, J. V. (2002). *Tetrahedron*, 58, 1051–1059.

Bondi, A. (1964). J. Phys. Chem. 68, 441-452.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

- ChemAxon (2010). MarvinSketch. http://www.chemaxon.com.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Guadagnin, R. C., Suganuma, C. A., Singh, F. V., Vieira, A. S., Cella, R. & Stefani, H. A. (2008). *Tetrahedron Lett.* 49, 4713–4716.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925. Zeni, G., Chieffi, A., Cunha, R. L. O. R., Zukerman-Schpector, J., Stefani, H. A. & Comasseto, J. V. (1999). Organometallics, 18, 803-806.

supplementary materials

Acta Cryst. (2012). E68, o854–o855 [doi:10.1107/S1600536812007490]

1-[(Z)-2-Butyltellanyl-1-chloroethenyl]cyclohex-1-ene

Julio Zukerman-Schpector, Ignez Caracelli, Rafael Carlos Guadagnin, Hélio A. Stefani and Edward R. T. Tiekink

Comment

The title compound, (I), was synthesized by reduction with sodium borohydride of the corresponding 2-halovinyl tellurium dichloride (Guadagnin *et al.*, 2008).

The Te^{II} atom in (I), Fig. 1, is coordinated by C atoms derived from the organic substituents which define a V-shape, Table 1. The conformation about the C1=C2 bond [1.334 (4) Å] is Z. The ethene bond in the six-membered ring is orientated toward the Cl atom enabling the formation of an intramolecular C—H···Cl interaction, Table 2. The conformation of the six-membered ring is a half-chair with the C5 atom lying 0.641 (5) Å above the plane of the remaining five atoms (r.m.s. deviation = 0.0738 Å), with puckering parameters: $q_2 = 0.381$ (4) Å and $q_3 = 0.311$ (4) Å, and amplitudes: Q = 0.492 (4) Å, $\theta = 50.8$ (5) ° and $\varphi_2 = 144.3$ (6) ° (Cremer & Pople, 1975).

In the crystal packing, molecules assemble into layers parallel to the *ac* plane, Fig. 2. Within layers, Te^{...}Teⁱ contacts of 3.9993 (16) Å, *i.e.* less than the sum of the van der Waals radius for Te of 4.4 Å (Bondi, 1964), are noted; *i*: -*x*, -*y*, 2 - *z*.

Experimental

The title compound was prepared as described in a previous study (Guadagnin *et al.*, 2008). Crystals of (I) were obtained by slow evaporation from its CHCl₃ solution held at room temperature.

Refinement

C-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. Owing to poor agreement, three reflections, *i.e.* (2 $\overline{8}$ 3), ($\overline{1}$ 4 4) and ($\overline{1}$ 5 6), were omitted from the final refinement.

Computing details

Data collection: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); cell refinement: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); data reduction: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view in projection down the *a* axis of the unit-cell contents for (I).

1-[(Z)-2-Butyltellanyl-1-chloroethenyl]cyclohex-1-ene

Crystal data $C_{12}H_{19}CITe$ $M_r = 326.32$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.666 (3) Å b = 7.687 (3) Å c = 12.266 (4) Å a = 95.499 (15)° $\beta = 105.060$ (14)° $\gamma = 111.832$ (13)° V = 632.8 (4) Å³

Z = 2 F(000) = 320 $D_x = 1.713 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8499 reflections $\theta = 1.7-29.8^{\circ}$ $\mu = 2.53 \text{ mm}^{-1}$ T = 100 KIrregular, yellow $0.3 \times 0.3 \times 0.2 \text{ mm}$ Data collection

	1 1 1
Rigaku Saturn/24 (2x2 bin mode)	3588 measured reflections
diffractometer	2421 independent reflections
Radiation source: fine-focus sealed tube	2406 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.9^\circ$
ω scans	$h = -8 \rightarrow 9$
Absorption correction: multi-scan	$k = -9 \rightarrow 7$
(ABSCOR; Higashi, 1995)	$l = -15 \rightarrow 14$
$T_{\min} = 0.575, T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: inferred from
$wR(F^2) = 0.069$	neighbouring sites
S = 1.17	H-atom parameters constrained
2421 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0343P)^2 + 1.4833P]$
128 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.86 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.95 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Те	0.10592 (3)	0.26493 (3)	0.970657 (16)	0.01857 (9)	
Cl	0.04726 (12)	0.30822 (11)	0.69597 (6)	0.02053 (17)	
C10	0.1785 (5)	0.2722 (4)	1.2266 (3)	0.0163 (6)	
H10A	0.2188	0.1662	1.2121	0.020*	
H10B	0.0323	0.2162	1.2066	0.020*	
C2	0.2010 (4)	0.5213 (4)	0.7990 (3)	0.0143 (6)	
C4	0.3968 (5)	0.8795 (4)	0.8452 (3)	0.0171 (6)	
H4A	0.5292	0.8862	0.8866	0.020*	
H4B	0.3262	0.8801	0.9022	0.020*	
C3	0.2828 (4)	0.6957 (4)	0.7553 (3)	0.0140 (6)	
C6	0.4941 (5)	1.0420 (5)	0.6892 (3)	0.0213 (7)	
H6A	0.5152	1.1599	0.6582	0.026*	
H6B	0.6223	1.0306	0.7137	0.026*	
C11	0.2714 (5)	0.3691 (5)	1.3547 (3)	0.0190 (6)	
H11A	0.4177	0.4269	1.3747	0.023*	
H11B	0.2292	0.4736	1.3698	0.023*	

C9	0.2398 (5)	0.4113 (5)	1.1492 (3)	0.0184 (6)	
H9A	0.3860	0.4681	1.1688	0.022*	
H9B	0.1980	0.5167	1.1623	0.022*	
C5	0.4221 (5)	1.0565 (5)	0.7922 (3)	0.0218 (7)	
H5A	0.2936	1.0674	0.7675	0.026*	
H5B	0.5188	1.1733	0.8511	0.026*	
C12	0.2110 (5)	0.2269 (5)	1.4310 (3)	0.0216 (7)	
H12A	0.0667	0.1735	1.4136	0.032*	
H12B	0.2755	0.2930	1.5125	0.032*	
H12C	0.2521	0.1230	1.4159	0.032*	
C8	0.2582 (4)	0.6929 (4)	0.6429 (3)	0.0155 (6)	
H8	0.1827	0.5730	0.5896	0.019*	
C1	0.2312 (5)	0.5094 (4)	0.9097 (3)	0.0174 (6)	
H1	0.3183	0.6237	0.9659	0.021*	
C7	0.3432 (5)	0.8689 (5)	0.5959 (3)	0.0183 (6)	
H7A	0.2337	0.9002	0.5536	0.022*	
H7B	0.4068	0.8400	0.5402	0.022*	

Atomic displacement parameters $(Å^2)$

				10	10	
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te	0.02669 (14)	0.01289 (13)	0.01485 (13)	0.00616 (9)	0.00697 (9)	0.00480 (8)
Cl	0.0278 (4)	0.0125 (3)	0.0153 (3)	0.0037 (3)	0.0050 (3)	0.0000 (3)
C10	0.0192 (14)	0.0146 (14)	0.0144 (14)	0.0061 (12)	0.0055 (12)	0.0032 (11)
C2	0.0138 (13)	0.0120 (13)	0.0167 (14)	0.0048 (11)	0.0054 (11)	0.0016 (11)
C4	0.0169 (14)	0.0158 (15)	0.0147 (14)	0.0026 (12)	0.0055 (11)	0.0026 (11)
C3	0.0147 (13)	0.0152 (14)	0.0144 (14)	0.0076 (11)	0.0061 (11)	0.0039 (11)
C6	0.0216 (15)	0.0183 (16)	0.0213 (16)	0.0039 (13)	0.0074 (13)	0.0084 (13)
C11	0.0221 (15)	0.0183 (15)	0.0153 (15)	0.0078 (13)	0.0049 (12)	0.0037 (12)
C9	0.0218 (15)	0.0181 (15)	0.0138 (14)	0.0061 (12)	0.0054 (12)	0.0055 (12)
C5	0.0265 (16)	0.0158 (15)	0.0193 (16)	0.0057 (13)	0.0064 (13)	0.0018 (12)
C12	0.0237 (16)	0.0266 (17)	0.0172 (15)	0.0112 (14)	0.0085 (13)	0.0073 (13)
C8	0.0165 (14)	0.0138 (14)	0.0151 (14)	0.0058 (11)	0.0043 (11)	0.0022 (11)
C1	0.0220 (15)	0.0123 (14)	0.0152 (14)	0.0047 (12)	0.0052 (12)	0.0036 (11)
C7	0.0214 (15)	0.0171 (15)	0.0148 (14)	0.0051 (12)	0.0069 (12)	0.0056 (12)

Geometric parameters (Å, °)

Te—C1	2.077 (3)	C6—H6B	0.9900	
Те—С9	2.148 (3)	C11—C12	1.526 (4)	
Cl—C2	1.750 (3)	C11—H11A	0.9900	
С10—С9	1.523 (4)	C11—H11B	0.9900	
C10-C11	1.526 (4)	С9—Н9А	0.9900	
C10—H10A	0.9900	С9—Н9В	0.9900	
C10—H10B	0.9900	C5—H5A	0.9900	
C2—C1	1.334 (4)	C5—H5B	0.9900	
С2—С3	1.471 (4)	C12—H12A	0.9800	
C4—C3	1.503 (4)	C12—H12B	0.9800	
C4—C5	1.532 (5)	C12—H12C	0.9800	
C4—H4A	0.9900	C8—C7	1.509 (4)	

C4—H4B	0.9900	C8—H8	0.9500
C3—C8	1.338 (4)	C1—H1	0.9500
C6—C7	1.514 (4)	С7—Н7А	0.9900
C6—C5	1.515 (5)	С7—Н7В	0.9900
С6—Н6А	0.9900		
C1—Te—C9	94.09 (12)	C10—C9—Te	110.3 (2)
C9—C10—C11	112.3 (3)	С10—С9—Н9А	109.6
C9—C10—H10A	109.1	Те—С9—Н9А	109.6
C11—C10—H10A	109.1	С10—С9—Н9В	109.6
C9—C10—H10B	109.1	Те—С9—Н9В	109.6
C11—C10—H10B	109.1	H9A—C9—H9B	108.1
H10A—C10—H10B	107.9	C6—C5—C4	110.7 (3)
C1—C2—C3	126.5 (3)	C6—C5—H5A	109.5
C1—C2—Cl	116.5 (2)	C4—C5—H5A	109.5
C3—C2—C1	117.0 (2)	C6—C5—H5B	109.5
C3—C4—C5	112.1 (3)	C4—C5—H5B	109.5
C3—C4—H4A	109.2	H5A—C5—H5B	108.1
C5—C4—H4A	109.2	C11—C12—H12A	109.5
C3—C4—H4B	109.2	C11—C12—H12B	109.5
C5—C4—H4B	109.2	H12A—C12—H12B	109.5
H4A—C4—H4B	107.9	C11—C12—H12C	109.5
C8—C3—C2	122.8 (3)	H12A—C12—H12C	109.5
C8—C3—C4	121.6 (3)	H12B—C12—H12C	109.5
C2—C3—C4	115.7 (3)	C3—C8—C7	123.9 (3)
C7—C6—C5	110.2 (3)	С3—С8—Н8	118.1
С7—С6—Н6А	109.6	С7—С8—Н8	118.1
С5—С6—Н6А	109.6	C2—C1—Te	126.3 (2)
С7—С6—Н6В	109.6	C2—C1—H1	116.9
С5—С6—Н6В	109.6	Te—C1—H1	116.9
H6A—C6—H6B	108.1	C8—C7—C6	113.1 (3)
C12—C11—C10	111.6 (3)	С8—С7—Н7А	109.0
C12—C11—H11A	109.3	С6—С7—Н7А	109.0
C10-C11-H11A	109.3	С8—С7—Н7В	109.0
C12—C11—H11B	109.3	С6—С7—Н7В	109.0
C10—C11—H11B	109.3	H7A—C7—H7B	107.8
H11A—C11—H11B	108.0		
C1—C2—C3—C8	174.6 (3)	C7—C6—C5—C4	61.8 (4)
Cl—C2—C3—C8	-5.9 (4)	C3—C4—C5—C6	-48.2 (4)
C1—C2—C3—C4	-5.6 (4)	C2—C3—C8—C7	-179.0 (3)
Cl—C2—C3—C4	173.9 (2)	C4—C3—C8—C7	1.2 (5)
C5—C4—C3—C8	17.1 (4)	C3—C2—C1—Te	177.3 (2)
C5—C4—C3—C2	-162.7 (3)	Cl—C2—C1—Te	-2.2 (4)
C9—C10—C11—C12	-179.1 (3)	C9—Te—C1—C2	-177.3 (3)
C11—C10—C9—Te	179.5 (2)	C3—C8—C7—C6	12.0 (4)
C1—Te—C9—C10	179.5 (2)	C5—C6—C7—C8	-42.7(4)

supplementary materials

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C8—H8···Cl	0.95	2.56	3.024 (3)	110